Thursday, December 21, 2017

Jacobs School Research in the News: Science Highlights from 2017

A new recipe for Martian bricks. Soft robots that walk on rough terrain. Combining squid ink and ultrasound to make a pain-free gum disease probe. These are among the science stories from the UC San Diego Jacobs School of Engineering that made headlines in 2017. Here is a roundup of the year's top science news hits:

New Blood Test Could Help Detect and Locate Cancer Early On
Bioengineers at UC San Diego have developed a new blood test that could detect cancer—and locate where in the body the tumor is growing. By screening for particular DNA signatures from both cancer cells and normal cells in the body, researchers discovered a new clue that indicates not just the presence or absence of a tumor, but also where it resides. The proof-of-concept study could provide a way to diagnose cancer early on without having to do invasive surgical procedures like biopsies. 

Featured in Newsweek, CW6 San Diego, NBC Bay Area and Yahoo! News

New Nano-Implant Could One Day Help Restore Sight
A team of engineers at UC San Diego and La Jolla-based startup Nanovision Biosciences Inc. have developed the nanotechnology and wireless electronics for a new type of retinal prosthesis that brings research a step closer to restoring the ability of neurons in the retina to respond to light. The researchers demonstrated this response to light in a rat retina interfacing with a prototype of the device in vitro

Featured in The San Diego Union Tribune, NBC News and Yahoo! News

Engineers Investigate a Simple, No-Bake Recipe to Make Bricks From Martian Soil
Explorers planning to settle on Mars might be able to turn the planet’s red soil into bricks without needing to use an oven or additional ingredients. Instead, they would just need to apply pressure to compact the soil—the equivalent of a blow from a hammer. While proposals to use Martian soil to build habitats for manned missions on the planet are not new, this is the first that shows astronauts would need minimal resources to do so.

Featured in Smithsonian, Popular Mechanics, Popular ScienceThe New York Times, WIRED UK, The San Diego Union Tribune, Yahoo! NewsForbes, USA Today, The Verge and Engadget

Nano Fiber Feels Forces and Hears Sounds Made by Cells
Engineers at UC San Diego have developed a nanosized optical fiber that's sensitive enough to feel the forces generated by swimming bacteria and hear the beating of heart muscle cells. It can detect forces down to 160 femtonewtons and sound levels down to -30 decibels. Applications of the device include measuring bio-activity at the single cell level, or an ultra-sensitive mini stethoscope to monitor cellular acoustics in vivo.

Featured in STAT news, The San Diego Union Tribune, BBC Inside Science and Physics World

3D-Printed Soft Four Legged Robot Can Walk on Sand and Stone
Engineers at UC San Diego have developed the first soft robot that is capable of walking on rough surfaces, such as sand and pebbles. The 3D-printed, four-legged robot can climb over obstacles and walk on different terrains. The robot could be used to capture sensor readings in dangerous environments or for search and rescue.

Featured in CNN TechNBC 2IEEE Spectrum, IFLScience! and Engadget

Researchers Find Computer Code That Volkswagen Used to Cheat Emissions Tests
An international team of researchers has uncovered the mechanism that allowed Volkswagen to circumvent U.S. and European emission tests over at least six years before the Environmental Protection Agency put the company on notice in 2015 for violating the Clean Air Act. During a year-long investigation, researchers found code that allowed a car’s onboard computer to determine that the vehicle was undergoing an emissions test. The computer then activated the car’s emission-curbing systems, reducing the amount of pollutants emitted. Once the computer determined that the test was over, these systems were deactivated. 

Featured in The New York Times and CNET

Low-Cost Smart Glove Converts Signs of American Manual Alphabet to Text
A new smart glove wirelessly converts signs of the American Manual Alphabet into text and controls a virtual hand to mimic sign language gestures. The device, which engineers call “The Language of Glove,” was built for less than $100 using stretchable and printable electronics that are inexpensive, commercially available and easy to assemble. While the glove is capable of gesture recognition, researchers at UC San Diego are developing the glove to be used in a variety of other applications ranging from virtual and augmented reality to telesurgery, technical training and defense.

Featured in Newsweek10News - ABC San Diego, Popular MechanicsKPBSIEEE Spectrum and New Scientist

Drug-Delivering Micromotors Treat Their First Bacterial Infection in the Stomach
Nanoengineers at UC San Diego have demonstrated for the first time using micromotors to treat a bacterial infection in the stomach. These tiny vehicles, each about half the width of a human hair, swim rapidly throughout the stomach while neutralizing gastric acid and then release their cargo of antibiotics at the desired pH. This micromotor-enabled delivery approach is a promising new method for treating stomach and gastrointestinal tract diseases with acid-sensitive drugs, researchers said.

Featured in Discover MagazineThe San Diego Union TribuneIFLScience!New York PostThe ScientistNew Scientist and Engadget

New Dental Imaging Method Uses Squid Ink to Fish for Gum Disease
Squid ink might be a great ingredient to make black pasta, but it could also one day make getting checked for gum disease at the dentist less tedious and even painless. By combining squid ink with light and ultrasound, researchers have developed a new dental imaging method to examine a patient’s gums that is non-invasive, more comprehensive and more accurate than the state of the art.

Featured in BBC World Service - Health Check, STAT News, Engadget and NY Daily News

This Soft Robotic Gripper Can Screw in Your Light Bulbs For You
How many robots does it take to screw in a light bulb? The answer: just one, assuming you’re talking about a new robotic gripper developed by engineers at UC San Diego. The engineering team has designed and built a gripper that can pick up and manipulate objects without needing to see them or be trained.  The gripper not only can twist and sense objects, it can also build models of the objects it’s manipulating. This allows the gripper to operate in low light and low visibility conditions, for example.

Featured in Reuters

Monday, December 11, 2017

Bioengineering undergraduate wins space scholarship

Kristine Khieu might be studying the spine, but she has her sights set on space.

The fourth year bioengineering undergraduate at UC San Diego was one of six students nationwide selected to receive a prestigious Universities Space Research Association (USRA) scholarship for her research on the effects of a zero-gravity environment on spinal muscles. Khieu was also commended for her science, technology, engineering, art and math (STEAM) outreach efforts.

USRA awards scholarships to undergraduate students who tackle challenging scientific questions in the areas of space research and exploration, particularly astrophysics and astronomy, and create technologies and solutions that positively affect people’s lives.

“My primary research interest is in astronaut physiology—how our bodies change in space,” said Khieu, who works in Alan Hargens’ Clinical Physiology Lab at the UC San Diego School of Medicine. “I actually traveled to the Johnson Space Center in Houston, Texas and got to help test some astronaut subjects.”

Khieu plans to apply to medical school, but said having an engineering background will prove useful in the medical field and beyond.

 “I love my education through bioengineering— especially through the lens of medicine— because I think most doctors don’t have that kind of engineering perspective and it’s such an advantage to have a different way of thinking to approach medicine,” she said. “I have a dream of becoming a flight surgeon—basically the doctor for astronauts—because they mesh engineering and medicine. They not only study the human body in space or in extreme environments, but they also study the engineering behind devices that keep these people alive.”

Outside of classwork and lab work, Khieu finds time to serve as president of the Tritons for Sally Ride Science club at UC San Diego, focused on STEAM outreach to engage the next generation of innovators.

“Sally Ride was the first female American astronaut, taught physics at UC San Diego and is someone I looked up to even before coming here,” Khieu said. “This foundation was started by her. She was such a role model for young girls while she was alive, and even to this day. My work is to help continue that legacy.”

Khieu was awarded the Frederick Tarantino Memorial Scholarship Award, a $4,000 scholarship in memory of Tarantino, a former USRA president and CEO. 

Friday, December 1, 2017

Solid State LIDAR Startup from Jacobs School Wins Biz Competition

(Updated 12/417 to reflect the contributions of UC San Diego electrical engineering PhD student Babak Bahari.)

A startup that emerged from the UC San Diego electrical and computer engineering department took first place and $10,000 this week in the latest competition of the Triton Innovation Challenge, an annual UC San Diego business competition for environmentally focused technologies.

The team, BIC LIDAR, is working on compact, solid state lasers for LIDAR applications. For this competition, the team focused on their LIDAR system’s possible applications in wildfire detection in forestry. However, autonomous vehicles are among applications of this technology that have large potential markets. 

The researchers are aiming at size and price points that are significantly more compact and less expensive than today’s LIDAR technologies. A slide from BIC LIDAR's presentation suggests they are going for $10/device compared to LIDAR currently on the market, which comes in at more than $200/device.

Babak Bahari presenting at the Triton Innovation Challenge.

The research came out of the lab of Jacobs School of Engineering electrical engineering professor Boubacar Kante. One of the key players in the startup is Babak Bahari, a fourth year graduate student at electrical and computer engineering department at the Jacobs School of Engineering.

“We demonstrated the new laser based on completely new physics that enables us to surpass a fundamental technological barrier in LIDAR technology. With this laser, we can remove all mechanical components, shrink the size of LIDAR systems into the nano-scale, and increase the speed at least six orders of magnitude,” said Bahari.

Abdoulaye Ndao, Babak Bahari, UC San Diego electrical engineering
professor Boubacar Kante (left to right)
Want more details? The key technology: bound states in the continuum (BIC) lasers. They offer unique properties, including tunable emission angle, emission wavelength, and potential for high-power applications. The team is developing a tunable, chip-level, solid state BIC laser for LIDAR that could be deployed in many different applications including wildfire detection and autonomous vehicles. (Read the press release on related related 2017 Nature paper.)

The solid state LIDAR team was one of the inaugural cohort of startups to be accepted into the technology accelerator launched by the UC San Diego Institute for the Global Entrepreneur in May 2017. 

Second place in the same competition went to E-Way, which is a collaboration led by Wei Huang, who is a Jacobs School materials science graduate student in Joanna McKittrick’s lab, and Alejandro Conde PhD, who is currently a Rady School MBA student.

According to the UC San Diego Office of Innovation and Commercialization twitter feed @UCSDInnovation, E-Way is developing technology to safely electrify roads using solar panels

The Triton Innovation Challenge, now in its sixth year, is a business competition focused on fostering creativity and bringing to the spotlight commercially promising, environmentally focused technologies generated by the finest minds at UC San Diego. Supported through the generosity of The William and Kathryn Scripps Family Foundation Inc., the program is presented through a partnership of the Rady School of Management, Scripps Institution of Oceanography, and the Jacobs School of Engineering.

This most recent competition awarded cash prizes totaling $20,000 to support new and innovative ideas that relate to the environment (comes from, inspired by, or directly impacts nature.)  

Monday, November 27, 2017

Joseph Wang named Honorary Doctor in Europe

Joseph Wang, Distinguished Professor and Chair of Nanoengineering at UC San Diego, was awarded a "Doctor Honoris Causa" (honorary doctorate) by two universities in Europe last week.

On Monday, Nov. 20, Charles University in Prague awarded Wang an honorary doctorate in Natural Sciences for his "outstanding academic achievements in the field of Analytical Chemistry."

And on Friday, Nov. 24, the Senate of the Iuliu Haţieganu University of Medicine and Pharmacy in Cluj-Napoca, Romania, also conferred an honorary doctorate on Wang in recognition of his "prodigious merits in the field of Electrochemistry."

Here are photos from the ceremony at Charles University in Prague:

Here are photos from the ceremony at the Iuliu Haţieganu University of Medicine and Pharmacy in Cluj-Napoca, Romania:

Wednesday, November 22, 2017

This computer program really wants you to try strawberry ham pie this Thanskgiving

Still looking for a recipe idea for your Thanksgiving pie? Janelle Shane, who got her PhD in electrical engineering at the Jacobs School, is here to help--well, soft of.
Shane has trained a neural network, a type of computer program that learn by looking at examples, to generate recipe titles, based on a database of 2237 sweet and savory pie recipes.
The results didn't disappoint.
The neural network git creative and suggested Strawberry Ham Pie and Turkey Cinnamon Pie, as well as Impossible Maple Spinach Apple Pie--whatever that is.
Other suggestions were more on point, including Baked Cream Puff Cake, Eggnog Peach Pie and Fried Pumpkin Pie.
For more fun pie names and other neural network merriment, check out Shane's blog:

So Bon Appetit! And Happy Thanksgiving!

Thursday, November 16, 2017

Engineering Art Contest Winner: Let It Snow Crystalline Dendrites

Image of snowflake-like crystalline dendrite wins first annual Jacobs School of Engineering Art Contest

Crystalline dendrite imaged by transmission-mode Scanning Electron Microscopy. Image credit: Kevin Kaufmann
It’s extremely rare to spot a snowflake in sunny San Diego. But nanoengineering Ph.D. student Kevin Kaufmann routinely sees snowflakes through the lens of a microscope at UC San Diego—well, crystalline dendrites that resemble picturesque snowflakes.

The image of a crystalline dendrite seen here is the winning entry of the first annual Jacobs School of Engineering Art Contest. The contest provided engineers at UC San Diego an opportunity to share their research through original artwork. Submissions included photography, microscopy images, computer graphics illustrations, journal cover art, and other media. Kaufmann received a $100 Visa gift card for his winning entry, which is featured on the Jacobs School website and social media. 

Kaufmann works in the lab of nanoengineering professor Kenneth Vecchio, where he makes and studies metal alloys made of crystalline dendrites. Kaufmann captured the image of one of these crystalline dendrites using a method called transmission-mode Scanning Electron Microscopy (tSEM). This method produces images of a sample by bombarding the surface of the sample with a beam of electrons. The interactions between the electron beam and the sample then produce signals that relay information about the composition and surface features of the sample.  

For more on Kaufmann's research, read the story here.

Stay tuned to see entries that received an honorable mention. These images will also be shared on the Jacobs School FacebookInstagram and Twitter accounts in the coming weeks.

Saturday, November 11, 2017

Matthew Wnuk: electrical engineer, Navy veteran

Matthew Wnuk at UC San Diego, where's he's working towards
 a master's degree in electrical engineering.
Matthew Wnuk joined the Navy in 2004 and was trained as a sonar technician at the Anti-Submarine Warfare base in Point Loma. Nine years of active duty service, an undergraduate degree, several internships and a job later, and he’s still using the skills he learned in that position, this time as an electrical engineering master’s student at UC San Diego.

Being a sonar tech has two components—electronics and intelligence—and Wnuk had the chance to serve in both capacities during his time in the Navy, which took him to Japan, the Pacific Islands and just about everywhere in between.

“For the electronics part, you trouble shoot and fix and maintain electronic suites,” Wnuk said. “If a capacitor goes bad you have to do an electronic survey of the board to figure out what went wrong. And the other side of it is intelligence—either collecting or analyzing intelligence—which is what I did my last three years, doing the analysis on all the intelligence sent in from the fleet.”

Being a sonar technician piqued his interest in electronics, so when he transitioned out of active duty, he decided to pursue a degree in electrical engineering at San Diego State University. He worked hard and excelled in the program, even serving as president of SDSU’s chapter of the IEEE honor society his senior year.

While earning his undergraduate degree, Wnuk put his military and academic experience to use through an internship with Northrop Grumman, conducting electromagnetic research with applications for UAVs. He also interned for NASA, testing circuitry for an optical receiver used on a LiDAR system for the Lunar Lander. After graduation he decided to pursue a career with the Navy’s Space and Naval Warfare Systems Center Pacific.

“At SSC Pacific, I’m doing electronic design of hardware for unmanned aerial vehicles and aerostats, which are giant blimps,” he said. “I’m also doing a little bit of software for controlling communications for UAVs.”

After just one year at SSC Pacific, Wnuk was ready to take on another challenge, and began his master’s degree in electrical engineering at UC San Diego while he continues to work. He’s focusing on machine learning, which is an area he thinks will have many applications in the defense sector.

“It’s been an incredible challenge,” he said. “Because the machine learning portion is more of a computer science background, which is something I didn’t have, it took about a quarter for me to get my feet on the ground. But I think I’m making good progress.”

Friday, November 10, 2017

Alan Adame: computer scientist, Army captain

Alan Adame points to a picture of himself jumping
out of a plane during his time as a paratrooper.
Alan Adame is a master’s student in the computer science and engineering department at UC San Diego, studying computer science. He’s also a captain in the U.S. Army, preparing for a tour as a research scientist at the Army Cyber Institute at West Point University.

A West Point graduate himself, Adame was commissioned to the Army as a signal officer, and deployed to Iraq as a platoon leader in 2010, not long after earning his degree.

“My job there was basically to start getting everything ready so we could hand it over to the Iraqi Army,” Adame said. “The fiber optic cable, anything we dealt with as far as communications— if the Iraqi Army wasn’t familiar with it, we would train them.”

After he returned from Iraq, Adame was stationed in Ft. Bragg, N.C. with the 82nd Airborne Division of paratroopers. There, he was tasked with ensuring everyone in the division had the platforms and systems they needed to be able to communicate on the same network. All while jumping out of planes, of course.

“No matter what you do—cook, HR personnel, whatever your job is—you jump out of an airplane,” he said. “The 82nd Airborne is a Global Response Force—the country’s 911. When a disaster happens, we deploy there to help. It’s the best job in the world.”

He performed well enough in that role that he was selected to attend graduate school, and is in his fourth quarter of the computer science master’s degree program at UC San Diego. There is no jumping out of planes, but Adame said the curriculum is challenging.

“It’s hard. I didn’t think it was going to be this hard. From the military perspective, whenever you get to do this type of opportunity it’s seen like you get to take a break, but this is not like that,” he said. “It’s been really tough. What we’re learning is cool, but it’s challenging.”

He said the atmosphere reminds him of his paratrooper days in some ways, since he’s surrounded by people at the top of their field.

“Here, academically, everybody is really, really smart. You’re trying to hang with everybody so it’s challenging mentally. Where there, everyone is really good physically. Everybody is at the top of their game, is driven, is always trying to do the right thing and work hard.”

Adame has always been interested in computers and started programming at the age of 12, so the opportunity to work as a research scientist and instructor at the recently established Army Cyber Institute is an exciting one.

“The interesting part about it is that the Center was just stood up a few years ago, and the cyber branch within the Army is a recent addition as well," Adame said. "If you’re going to be an infantryman or artillery, you can find all these field manuals that say ‘This is how you do this, this is how you plan this operation.’ Basically, what the Army Cyber Institute is doing is putting together research so we can formalize that branch to establish these kind of standards.”

Wednesday, November 1, 2017

Video: Jacobs School computer scientist talks about the future of health care robotics

 UC San Diego computer scientist Laurel Riek wants to put a robot in someone's home for six months.
"We want to build robots that can adapt to learn from and change with a person, not only throughout the week, but throughout the day," she says in this video for the journal Communications of the ACM.
Riek is the author of a review article titled Healthcare Robotics in the journal's November 2017 issue.
The full text of the article is available here:
She is a professor of computer science at the Jacobs School of Engineering at UC San Diego and a faculty member of the campus' Contextual Robotics Institute.
Her research goal is to enable robots to robustly solve problems in dynamically- changing human environments. Riek is particularly focused on problems in real-world, safety-critical healthcare environments, such as hospitals, homes and clinics. Her work tackles the fundamental and applied problems that make complex, real-world perception and interaction in these spaces so challenging for robots. Riek’s work draws on techniques from the fields of computer vision, machine learning, non-linear dynamics, and human factors to enable robots to autonomously perceive, respond, and adapt to people in the real world.  

Tuesday, October 31, 2017

Need a last-minute Halloween costume idea? This neural network has got you covered!

Need a last-minute costume idea for Halloween? How about a cyborg bat? Or a vampire shark? Or a magic sexy hamburger?
These are all costumes generated by a neural network trained by Jacobs School alumna Janelle Shane. Shane, who earned a Ph.D. in electrical engineering at UC San Diego in the lab of Professor Shaya Fainman, works with lasers by day. But her hobby is working with neural networks to create funny data sets.
For this project, she crowdsourced 4500 costume ideas from her blog readers and fed them to a neural network.
The network did not disappoint, generating costume suggestions such as vampire Big Bird, celery blue Frankenstein and strawberry shark.
Soon, Shane's readers were getting into the game and drawing the costumes the neural network suggested.
First up, strawberry shark:

And then: Bearley Quinn (courtesy of Twitter user @vonbees):

But Shane's readers weren't done. Soon they started making some of the costume suggestions a reality.
Twitter user Liz Walsh dressed up as the Dragon of Liberty:

Twitter user @HerbLovesTech and his wife dressed up as Professor Panda and Shark Princess:

And Shane? She took her inspiration from an entry in the costume data base. She will be Ruth Vader Ginsburg (that's a mash up of Supreme Court Justice Ruth Bader Ginsburg and Star Wars villain Darth Vader):

For more neural-network generated Halloween costumes, read Shane's blog post here. And read this news story by writer Rae Paoletta here and this Popular Mechanics story by writer Sophie Weiner.

Tuesday, October 17, 2017

UC San Diego Mechanical and Aerospace Engineering Professor Miroslav Krstic Receives ASME Rufus Oldenburger Medal

Photo: Krstic (r) with Peter Meckl,
Chair of ASME Dynamic Systems & Control Division. 
UC San Diego mechanical and aerospace engineering professor Miroslav Krstic received the ASME Rufus Oldenburger Medal for lifetime achievements in automatic control at 10th ASME Dynamic Systems& Control Conference in Washington, DC in October 2017. 
Krstic’s acceptance lecture was on control of congested traffic (abstract at end of blog post).
Krstic serves as Sr. Assoc. Vice Chancellor for Research at UC San Diego. He is Director of the Cymer Center for Control Systems and Dynamics and holds the Daniel L. Alspach Endowed Chair in Dynamic Systems and Control.
Krstic is the mechanical and aerospace engineering department’s second recipient of the Oldenburger Medal, following Professor Bob Bitmead in 2014.

The Rufus Oldenburger Medal is a prestigious Society award for lifetime achievements in automatic control. Inaugurated in 1968, the medal recognizes significant contributions and outstanding achievements in the field of automatic control. Such achievements may be, for example, in the areas of education, research, development, innovation, and service to the field and profession. The award was established to honor Rufus Oldenburger for his distinctive achievements in the field and for his service to the Society and the Division. The list of recipients is a true honor role of major contributors to the science and profession of control. 
Abstract: Control of freeway traffic using ramp metering is a “boundary control” problem when modeling is approached using widely adopted coupled hyperbolic PDE models of the Aw-Rascle-Zhang type, which include the velocity and density states, and which incorporate a model of driver reaction time. Unlike the “free traffic” regime, in which ramp metering can affect only the dynamics downstream of the ramp, in the “congested traffic” regime ramp metering can be used to suppress stop-and-go oscillations both downstream and upstream of the ramp - though not both simultaneously. Controlling the traffic upstream of a ramp is harder - and more interesting - because, unlike in free traffic, the control input doesn’t propagate at the speed of the vehicles but at a slower speed, which depends on a weighted difference between the vehicle speed and the traffic density. I will show how PDE backstepping controllers, which have been effective recently in oil drilling and production applications (similarly modeled by coupled hyperbolic PDEs), can help stabilize traffic, even in the absence of distributed measurements of vehicle speed and density, and when driver reaction times are unknown.

Blue LINC hosts Medical Innovators Hall of Fame Series

The Blue LINC Healthcare Incubator, UC San Diego's first biomedical incubator, will kick off its new Medical Innovators Hall of Fame Series with a presentation by Michael Ackermann, former CEO of med-tech startup Oculeve. Oculeve, which developed a tear-simulation device for those with dry-eye disease, was co-founded by Garrett Smith, a Ph.D. candidate in bioengineering at the Jacobs School of Engineering, and eventually acquired by Allergan.

During his talk titled "From University Collaboration to $100M Acquisition: A Tearful Tale of BioDesign," Ackermann will explain how acquisition by a global pharmaceutical giant is helping him achieve his goal of reaching as many patients as possible and will highlight his journey as a BioDesign Fellow at the Stanford Byers Center for BioDesign. Ackermann will discuss why big tech companies have yet to disrupt healthcare and how that translates into big opportunities for entrepreneurs, students, and faculty interested in startups.

The seminar is scheduled for Thursday, Oct. 26 from 6:00- 7:15 p.m. in Fung Auditorium in the Powell-Focht Bioengineering Hall. Register to attend at

Thursday, October 12, 2017

A new model for electrochemical kinetics in nanoscale systems

Understanding the speed at which electrochemical reactions occur can provide scientific insight for various processes ranging from biochemical reactions to charge storage in capacitors and batteries. However, to date, many of the theoretical and experimental analyses of electrochemical reaction speed- such as those in the widely used Butler-Volmer formulations are based on classical thermodynamics and adapt 19th century-based Arrhenius theory. In these cases, the charge transfer rate is assumed to constantly increase with applied voltage. While complementary theories consider the influence of the configurational rearrangements in the electrolyte and energy level occupancy, none have related the kinetics to the specific arrangement of the electrons in the material constituting the electrode. The latter aspect is very important for nanoscale materials where the bulk is but a small part of the whole.

Recently, a team of engineers at UC San Diego led by professor of mechanical engineering Prab Bandaru and involving Ph.D. students Hidenori Yamada and Rajaram Narayanan, probed in detail, both theoretically and experimentally, the specific characteristics of a nanostructured material with respect to its effect on charge transfer. They demonstrated that in a one-dimensional nanotube, the electrons are confined to a line, while in two-dimensional graphene, the electrons are confined to a plane. Based on these findings, the researchers expect that the restriction on electron motion hinders charge transfer and electrochemical kinetics. On the other hand, the reduced electron scattering could enhance the kinetics. The team resolved these issues by taking advantage of the specific arrangement of the electrons in the nanostructure. They applied their theories to explain the experimental variation of the electrochemical rate constant of single layer graphene.

(a) Atomic force microscopy image of a section of the single layer graphene (SLG) sample transferred onto a p-Si/SiO2 substrate. The wrinkles on the sample surface corresponding to the line scan (white line) are displayed in the lower left inset. The Raman spectrum of the transferred SLG is indicated in the top right inset. (b) Schematic of the three-electrode droplet electrochemical cell (actual experimental arrangement shown in the top right inset). The SLG working electrode (WE), Pt wire counter electrode (CE) and a reference (REF) saturated calomel electrode are indicated.

The researchers detailed their findings in a recent issue of the Journal of Physical Chemistry Letters

The team discovered that the charge transfer rate may either increase, decrease or remain constant, and that such variation is sensitive to the orientation as well as the relevant dimensionality of the nanostructure. As charge transfer per unit time determines the electrical current that may be obtained from a given electrode, the UC San Diego study provides a firm rationale for the use of nanostructures in charge storage electrodes, with applications encompassing solid state battery-related systems, wearable sensors, etc., where electrical current modulations would impact energy and power delivery.

A plot of the charge transfer related electrochemical rate constant (k) normalized to the kη=0V as a function of the applied voltage (η), considered with respect to the redox potential. The experimental data is a poor fit with the theoretical fits expected from conventional Butler-Volmer (B-V) kinetics as well as three-dimensional Marcus-Hush-Chidsey (MHC) kinetics, but could be fit well through a dimensionality dependent electrochemical model proposed by a team of engineers at UC San Diego.

Paper: Dimensionality-Dependent Electrochemical Kinetics at the Single-Layer Graphene–Electrolyte Interface, R. Narayanan, H. Yamada, B.C. Marin, A. Zaretski, and P.R. Bandaru, J. Phys. Chem. Lett., 2017, 8 (17), pp 4004–4008.

Friday, October 6, 2017

3D-Printed Space Rocket Startup Funded by New VC Fund Contrary Capital

UC San Diego Jacobs School of Engineering students are the founders of one of the first two university startups to receive funding by a new VC fund called Contrary Capital.

Contrary Capital has a novel take on tracking down university startups to invest in. The details are outlined in a story by Mike Freeman ( @TechDiego on Twitter ) in the San Diego Union Tribune:

The Jacobs School startup that received funding is Additive Rocket Corporation (ARC), which 3D prints high-impulse, low-cost, lightweight metal rocket engines for the space industry. Additive Rocket Corp. Founded in 2015 by recent graduates Andy Kieatiwong and Kyle Adriany. According to the ARC website, “space exploration hinges on innovation of propulsion technology.”

The ARC students have participated in a number of entrepreneurism programs on campus, including The Basement and the Qualcomm Institute Innovation Space.

We look forward to tracking ARC’s successes. 

Good luck, and may the [propulsive] force be with you!

Wednesday, October 4, 2017

Combining soft robotics and space technology

Paul Glick, a Ph.D. student at the Jacobs School, got a unique chance to do hands-on at the Jet Propulsion Laboratory in Pasadena, Calif.
Glick, who works in the lab of mechanical engineering professor and roboticist Michael Tolley, got to design and carry out most of the experiments for an electrostatic gripper for flexible objects build by JPL and UC Berkeley engineers. The team presented their work at the IROS 2017 conference in late September in Vancouver.
Glick is part of the NASA Space Technology Research Fellowship program. He works to bring soft robotics to space technology. Here is a more detailed description of his research. 
Tolley's group will present some of their research at the Oct. 27 Contextual Robotics Forum here on the UC San Diego campus. 
Watch a video of the gripper that Glick ran experiments on in action:

Tuesday, September 26, 2017

Better hurricane monitoring with robotic swarms

When: 2:45 p.m. Sept. 28, 2017
Where: Santa Clara Convention Center, Expo Theater
Professor Thomas Bewley
UCSD Flow Control & Coordinated Robotics Lab
Charles Bergan
VP of Engineering
Qualcomm Technologies, Inc.
More info:
While some robots take jobs, others save lives. The technology transfer underway from the cellphone industry into robotics has enabled a new class of low-cost robotic devices capable of providing advanced warning and tracking capabilities for major storms such as hurricanes Harvey and Irma. We will discuss a new proposal that uses cellphone technologies to build autonomous swarms of sensor-laden robots that will significantly improve our ability to estimate and forecast such extreme and dangerous atmospheric events.
Full press release about the research here:
 Simulation available here: