Thursday, November 16, 2017

Engineering Art Contest Winner: Let It Snow Crystalline Dendrites

Image of snowflake-like crystalline dendrite wins first annual Jacobs School of Engineering Art Contest

Crystalline dendrite imaged by transmission-mode Scanning Electron Microscopy. Image credit: Kevin Kaufmann
It’s extremely rare to spot a snowflake in sunny San Diego. But nanoengineering Ph.D. student Kevin Kaufmann routinely sees snowflakes through the lens of a microscope at UC San Diego—well, crystalline dendrites that resemble picturesque snowflakes.

The image of a crystalline dendrite seen here is the winning entry of the first annual Jacobs School of Engineering Art Contest. The contest provided engineers at UC San Diego an opportunity to share their research through original artwork. Submissions included photography, microscopy images, computer graphics illustrations, journal cover art, and other media. Kaufmann received a $100 Visa gift card for his winning entry, which is featured on the Jacobs School website and social media. 

Kaufmann works in the lab of nanoengineering professor Kenneth Vecchio, where he makes and studies metal alloys made of crystalline dendrites. Kaufmann captured the image of one of these crystalline dendrites using a method called transmission-mode Scanning Electron Microscopy (tSEM). This method produces images of a sample by bombarding the surface of the sample with a beam of electrons. The interactions between the electron beam and the sample then produce signals that relay information about the composition and surface features of the sample.  

For more on Kaufmann's research, read the story here.

Stay tuned to see entries that received an honorable mention. These images will also be shared on the Jacobs School FacebookInstagram and Twitter accounts in the coming weeks.

Saturday, November 11, 2017

Matthew Wnuk: electrical engineer, Navy veteran

Matthew Wnuk at UC San Diego, where's he's working towards
 a master's degree in electrical engineering.
Matthew Wnuk joined the Navy in 2004 and was trained as a sonar technician at the Anti-Submarine Warfare base in Point Loma. Nine years of active duty service, an undergraduate degree, several internships and a job later, and he’s still using the skills he learned in that position, this time as an electrical engineering master’s student at UC San Diego.

Being a sonar tech has two components—electronics and intelligence—and Wnuk had the chance to serve in both capacities during his time in the Navy, which took him to Japan, the Pacific Islands and just about everywhere in between.

“For the electronics part, you trouble shoot and fix and maintain electronic suites,” Wnuk said. “If a capacitor goes bad you have to do an electronic survey of the board to figure out what went wrong. And the other side of it is intelligence—either collecting or analyzing intelligence—which is what I did my last three years, doing the analysis on all the intelligence sent in from the fleet.”

Being a sonar technician piqued his interest in electronics, so when he transitioned out of active duty, he decided to pursue a degree in electrical engineering at San Diego State University. He worked hard and excelled in the program, even serving as president of SDSU’s chapter of the IEEE honor society his senior year.

While earning his undergraduate degree, Wnuk put his military and academic experience to use through an internship with Northrop Grumman, conducting electromagnetic research with applications for UAVs. He also interned for NASA, testing circuitry for an optical receiver used on a LiDAR system for the Lunar Lander. After graduation he decided to pursue a career with the Navy’s Space and Naval Warfare Systems Center Pacific.

“At SSC Pacific, I’m doing electronic design of hardware for unmanned aerial vehicles and aerostats, which are giant blimps,” he said. “I’m also doing a little bit of software for controlling communications for UAVs.”

After just one year at SSC Pacific, Wnuk was ready to take on another challenge, and began his master’s degree in electrical engineering at UC San Diego while he continues to work. He’s focusing on machine learning, which is an area he thinks will have many applications in the defense sector.

“It’s been an incredible challenge,” he said. “Because the machine learning portion is more of a computer science background, which is something I didn’t have, it took about a quarter for me to get my feet on the ground. But I think I’m making good progress.”

Friday, November 10, 2017

Alan Adame: computer scientist, Army captain

Alan Adame points to a picture of himself jumping
out of a plane during his time as a paratrooper.
Alan Adame is a master’s student in the computer science and engineering department at UC San Diego, studying computer science. He’s also a captain in the U.S. Army, preparing for a tour as a research scientist at the Army Cyber Institute at West Point University.

A West Point graduate himself, Adame was commissioned to the Army as a signal officer, and deployed to Iraq as a platoon leader in 2010, not long after earning his degree.

“My job there was basically to start getting everything ready so we could hand it over to the Iraqi Army,” Adame said. “The fiber optic cable, anything we dealt with as far as communications— if the Iraqi Army wasn’t familiar with it, we would train them.”

After he returned from Iraq, Adame was stationed in Ft. Bragg, N.C. with the 82nd Airborne Division of paratroopers. There, he was tasked with ensuring everyone in the division had the platforms and systems they needed to be able to communicate on the same network. All while jumping out of planes, of course.

“No matter what you do—cook, HR personnel, whatever your job is—you jump out of an airplane,” he said. “The 82nd Airborne is a Global Response Force—the country’s 911. When a disaster happens, we deploy there to help. It’s the best job in the world.”

He performed well enough in that role that he was selected to attend graduate school, and is in his fourth quarter of the computer science master’s degree program at UC San Diego. There is no jumping out of planes, but Adame said the curriculum is challenging.

“It’s hard. I didn’t think it was going to be this hard. From the military perspective, whenever you get to do this type of opportunity it’s seen like you get to take a break, but this is not like that,” he said. “It’s been really tough. What we’re learning is cool, but it’s challenging.”

He said the atmosphere reminds him of his paratrooper days in some ways, since he’s surrounded by people at the top of their field.

“Here, academically, everybody is really, really smart. You’re trying to hang with everybody so it’s challenging mentally. Where there, everyone is really good physically. Everybody is at the top of their game, is driven, is always trying to do the right thing and work hard.”

Adame has always been interested in computers and started programming at the age of 12, so the opportunity to work as a research scientist and instructor at the recently established Army Cyber Institute is an exciting one.

“The interesting part about it is that the Center was just stood up a few years ago, and the cyber branch within the Army is a recent addition as well," Adame said. "If you’re going to be an infantryman or artillery, you can find all these field manuals that say ‘This is how you do this, this is how you plan this operation.’ Basically, what the Army Cyber Institute is doing is putting together research so we can formalize that branch to establish these kind of standards.”


Wednesday, November 1, 2017

Video: Jacobs School computer scientist talks about the future of health care robotics

 UC San Diego computer scientist Laurel Riek wants to put a robot in someone's home for six months.
"We want to build robots that can adapt to learn from and change with a person, not only throughout the week, but throughout the day," she says in this video for the journal Communications of the ACM.
Riek is the author of a review article titled Healthcare Robotics in the journal's November 2017 issue.
The full text of the article is available here: https://cacm.acm.org/magazines/2017/11/222171-healthcare-robotics/fulltext
She is a professor of computer science at the Jacobs School of Engineering at UC San Diego and a faculty member of the campus' Contextual Robotics Institute.
Her research goal is to enable robots to robustly solve problems in dynamically- changing human environments. Riek is particularly focused on problems in real-world, safety-critical healthcare environments, such as hospitals, homes and clinics. Her work tackles the fundamental and applied problems that make complex, real-world perception and interaction in these spaces so challenging for robots. Riek’s work draws on techniques from the fields of computer vision, machine learning, non-linear dynamics, and human factors to enable robots to autonomously perceive, respond, and adapt to people in the real world.  

Tuesday, October 31, 2017

Need a last-minute Halloween costume idea? This neural network has got you covered!

Need a last-minute costume idea for Halloween? How about a cyborg bat? Or a vampire shark? Or a magic sexy hamburger?
These are all costumes generated by a neural network trained by Jacobs School alumna Janelle Shane. Shane, who earned a Ph.D. in electrical engineering at UC San Diego in the lab of Professor Shaya Fainman, works with lasers by day. But her hobby is working with neural networks to create funny data sets.
For this project, she crowdsourced 4500 costume ideas from her blog readers and fed them to a neural network.
The network did not disappoint, generating costume suggestions such as vampire Big Bird, celery blue Frankenstein and strawberry shark.
Soon, Shane's readers were getting into the game and drawing the costumes the neural network suggested.
First up, strawberry shark:

And then: Bearley Quinn (courtesy of Twitter user @vonbees):



But Shane's readers weren't done. Soon they started making some of the costume suggestions a reality.
Twitter user Liz Walsh dressed up as the Dragon of Liberty:



Twitter user @HerbLovesTech and his wife dressed up as Professor Panda and Shark Princess:


And Shane? She took her inspiration from an entry in the costume data base. She will be Ruth Vader Ginsburg (that's a mash up of Supreme Court Justice Ruth Bader Ginsburg and Star Wars villain Darth Vader):


For more neural-network generated Halloween costumes, read Shane's blog post here. And read this news story by writer Rae Paoletta here and this Popular Mechanics story by writer Sophie Weiner.

Tuesday, October 17, 2017

UC San Diego Mechanical and Aerospace Engineering Professor Miroslav Krstic Receives ASME Rufus Oldenburger Medal

Photo: Krstic (r) with Peter Meckl,
Chair of ASME Dynamic Systems & Control Division. 
UC San Diego mechanical and aerospace engineering professor Miroslav Krstic received the ASME Rufus Oldenburger Medal for lifetime achievements in automatic control at 10th ASME Dynamic Systems& Control Conference in Washington, DC in October 2017. 
Krstic’s acceptance lecture was on control of congested traffic (abstract at end of blog post).
Krstic serves as Sr. Assoc. Vice Chancellor for Research at UC San Diego. He is Director of the Cymer Center for Control Systems and Dynamics and holds the Daniel L. Alspach Endowed Chair in Dynamic Systems and Control.
Krstic is the mechanical and aerospace engineering department’s second recipient of the Oldenburger Medal, following Professor Bob Bitmead in 2014.

The Rufus Oldenburger Medal is a prestigious Society award for lifetime achievements in automatic control. Inaugurated in 1968, the medal recognizes significant contributions and outstanding achievements in the field of automatic control. Such achievements may be, for example, in the areas of education, research, development, innovation, and service to the field and profession. The award was established to honor Rufus Oldenburger for his distinctive achievements in the field and for his service to the Society and the Division. The list of recipients is a true honor role of major contributors to the science and profession of control. 
Abstract: Control of freeway traffic using ramp metering is a “boundary control” problem when modeling is approached using widely adopted coupled hyperbolic PDE models of the Aw-Rascle-Zhang type, which include the velocity and density states, and which incorporate a model of driver reaction time. Unlike the “free traffic” regime, in which ramp metering can affect only the dynamics downstream of the ramp, in the “congested traffic” regime ramp metering can be used to suppress stop-and-go oscillations both downstream and upstream of the ramp - though not both simultaneously. Controlling the traffic upstream of a ramp is harder - and more interesting - because, unlike in free traffic, the control input doesn’t propagate at the speed of the vehicles but at a slower speed, which depends on a weighted difference between the vehicle speed and the traffic density. I will show how PDE backstepping controllers, which have been effective recently in oil drilling and production applications (similarly modeled by coupled hyperbolic PDEs), can help stabilize traffic, even in the absence of distributed measurements of vehicle speed and density, and when driver reaction times are unknown.

Blue LINC hosts Medical Innovators Hall of Fame Series

The Blue LINC Healthcare Incubator, UC San Diego's first biomedical incubator, will kick off its new Medical Innovators Hall of Fame Series with a presentation by Michael Ackermann, former CEO of med-tech startup Oculeve. Oculeve, which developed a tear-simulation device for those with dry-eye disease, was co-founded by Garrett Smith, a Ph.D. candidate in bioengineering at the Jacobs School of Engineering, and eventually acquired by Allergan.

During his talk titled "From University Collaboration to $100M Acquisition: A Tearful Tale of BioDesign," Ackermann will explain how acquisition by a global pharmaceutical giant is helping him achieve his goal of reaching as many patients as possible and will highlight his journey as a BioDesign Fellow at the Stanford Byers Center for BioDesign. Ackermann will discuss why big tech companies have yet to disrupt healthcare and how that translates into big opportunities for entrepreneurs, students, and faculty interested in startups.

The seminar is scheduled for Thursday, Oct. 26 from 6:00- 7:15 p.m. in Fung Auditorium in the Powell-Focht Bioengineering Hall. Register to attend at http://bluelincsd.com/.